Solving stochastic chemical kinetics by Metropolis Hastings sampling

نویسندگان

  • Azam S. Zavar Moosavi
  • Paul Tranquilli
  • Adrian Sandu
چکیده

This study considers using Metropolis-Hastings algorithm for stochastic simulation of chemical reactions. The proposed method uses SSA (Stochastic Simulation Algorithm) distribution which is a standard method for solving well-stirred chemically reacting systems as a desired distribution. A new numerical solvers based on exponential form of exact and approximate solutions of CME (Chemical Master Equation) is employed for obtaining target and proposal distributions in Metropolis-Hastings algorithm to accelerate the accuracy of the tau-leap method. Samples generated by this technique have the same distribution as SSA and the histogram of samples show it’s convergence to SSA. key words Metropolis-Hastings, SSA, CME, tau-leap.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the kinetics of different Markov models for ligand binding under varying conditions.

We recently derived a Markov model for macromolecular ligand binding dynamics from few physical assumptions and showed that its stationary distribution is the grand canonical ensemble [J. W. R. Martini, M. Habeck, and M. Schlather, J. Math. Chem. 52, 665 (2014)]. The transition probabilities of the proposed Markov process define a particular Glauber dynamics and have some similarity to the Metr...

متن کامل

DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Bayesian Analysis of the Stochastic Conditional Duration Model

A Bayesian Markov Chain Monte Carlo methodology is developed for estimating the stochastic conditional duration model. The conditional mean of durations between trades is modelled as a latent stochastic process, with the conditional distribution of durations having positive support. The sampling scheme employed is a hybrid of the Gibbs and Metropolis Hastings algorithms, with the latent vector ...

متن کامل

Estimating Correlated Jumps and Stochastic Volatilities

We formulate a bivariate stochastic volatility jump-diffusion model with correlated jumps and volatilities. An MCMC Metropolis-Hastings sampling algorithm is proposed to estimate the model’s parameters and latent state variables (jumps and stochastic volatilities) given observed returns. The methodology is successfully tested on several artificially generated bivariate time series and then on t...

متن کامل

Hemodynamic modelling of BOLD fMRI - A machine learning approach

Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for this neural activity. We identify one such parametric model by estimating the distribution of its parameters. These distributions are themselves stochastic, therefore we estimate their variance by epoch based leave-o...

متن کامل

Markovian Stochastic Approximation with Expanding Projections

Abstract. Stochastic approximation is a framework unifying many random iterative algorithms occurring in a diverse range of applications. The stability of the process is often difficult to verify in practical applications and the process may even be unstable without additional stabilisation techniques. We study a stochastic approximation procedure with expanding projections similar to Andradótt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1410.8155  شماره 

صفحات  -

تاریخ انتشار 2014